Kinetic Analysis of Human PrimPol DNA Polymerase Activity Reveals a Generally Error-Prone Enzyme Capable of Accurately Bypassing 7,8-Dihydro-8-oxo-2′-deoxyguanosine

نویسندگان

  • Maroof K. Zafar
  • Amit Ketkar
  • Maria F. Lodeiro
  • Craig E. Cameron
  • Robert L. Eoff
چکیده

Recent studies have identified human PrimPol as a new RNA/DNA primase and translesion DNA synthesis polymerase (TLS pol) that contributes to nuclear and mitochondrial DNA replication. We investigated the mechanism of PrimPol polymerase activity on both undamaged and damaged DNA substrates. With Mg²⁺ as a cofactor, PrimPol binds primer-template DNA with low affinity K(d,DNA) values (∼200-1200 nM). DNA binding is enhanced 34-fold by Mn²⁺ (K(d,DNA) = 27 nM). The pol activity of PrimPol is increased 400-1000-fold by Mn²⁺ compared to Mg²⁺ based on steady-state kinetic parameters. PrimPol makes a mistake copying undamaged DNA once every ∼100-2500 insertions events, which is comparable to other TLS pols, and the fidelity of PrimPol is ∼1.7-fold more accurate when Mg²⁺ is the cofactor compared to Mn²⁺. PrimPol inserts dCMP opposite 8-oxo-dG with 2- (Mn²⁺) to 6-fold (Mg²⁺) greater efficiency than dAMP misinsertion. PrimPol-catalyzed dCMP insertion opposite 8-oxo-dG proceeds at ∼25% efficiency relative to unmodified template dG, and PrimPol readily extends from dC:8-oxo-dG base pairs (bps) with ∼2-fold greater efficiency than dA:8-oxo-dG bps. A tetrahydrofuran (THF) abasic-site mimic decreases PrimPol activity to ∼0.04%. In summary, PrimPol exhibits the fidelity typical of other TLS pols, is rather unusual in the degree of activation afforded by Mn²⁺, and accurately bypasses 8-oxo-dG, a DNA lesion of special relevance to mitochondrial DNA replication and transcription.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Werner syndrome protein limits the error-prone 8-oxo-dG lesion bypass activity of human DNA polymerase kappa

Human DNA polymerase kappa (hpol κ) is the only Y-family member to preferentially insert dAMP opposite 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG) during translesion DNA synthesis. We have studied the mechanism of action by which hpol κ activity is modulated by the Werner syndrome protein (WRN), a RecQ helicase known to influence repair of 8-oxo-dG. Here we show that WRN stimulates the 8-oxo...

متن کامل

Error-Free Bypass of 7,8-dihydro-8-oxo-2′-deoxyguanosineby DNA Polymerase of Pseudomonas aeruginosa Phage PaP1

As one of the most common forms of oxidative DNA damage, 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxoG) generally leads to G:C to T:A mutagenesis. To study DNA replication encountering 8-oxoG by the sole DNA polymerase (Gp90) of Pseudomonasaeruginosa phage PaP1, we performed steady-state and pre-steady-state kinetic analyses of nucleotide incorporation opposite 8-oxoG by Gp90 D234A that lacks exo...

متن کامل

The effect of the 2-amino group of 7,8-dihydro-8-oxo-2′-deoxyguanosine on translesion synthesis and duplex stability

Replication of DNA containing 7,8-dihydro-8-oxo-2'-deoxyguanosine (OxodG) gives rise to G --> T transversions. The syn-isomer of the lesion directs misincorporation of 2'-deoxyadenosine (dA) opposite it. We investigated the role of the 2-amino substituent on duplex thermal stability and in replication using 7,8-dihydro-8-oxo-2'-deoxyinosine (OxodI). Oligonucleotides containing OxodI at defined ...

متن کامل

An electrochemiluminescence biosensor for 8-oxo-7,8-dihydro-2'-deoxyguanosine quantification and DNA repair enzyme activity analysis using a novel bifunctional probe.

A new electrochemiluminescence (ECL) sensor was developed for 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) quantification and Escherichia coli formamidopyrimidine-DNA glycosylase (FPG) activity assay. The sensor employed a novel spermine conjugated ruthenium tris-(bipyridine) derivative (spermine-Ru) which binds specifically with 8-oxodGuo through a one-step reaction and also acts as an ECL ...

متن کامل

PolDIP2 interacts with human PrimPol and enhances its DNA polymerase activities.

Translesion synthesis (TLS) employs specialized DNA polymerases to bypass replication fork stalling lesions. PrimPol was recently identified as a TLS primase and polymerase involved in DNA damage tolerance. Here, we identify a novel PrimPol binding partner, PolDIP2, and describe how it regulates PrimPol's enzymatic activities. PolDIP2 stimulates the polymerase activity of PrimPol, enhancing bot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2014